Interactive Distributed Source Coding for Network Function Computation

Nan Ma Joint work with Prakash Ishwar

Electrical and Computer Engineering

Research supported by

Motivation

- Sensor networks:
 - Don't need entire data, only functions
- Traditional data networks:
 - Move entire data to destination
 - Centralized computing
 - Inefficient
 - Resources: blocklength, SNR, frequency

Interactive Function Computation

Motivation

- Sensor networks:
 - Don't need entire data, only functions
- Traditional data networks:
 - Move entire data to destination
 - Centralized computing
 - Inefficient
 - Resources: blocklength, SNR, frequency
- In-network distributed computing:
 - Process data as it moves
 - Efficient
 - New resource: two-way multi-round interaction

Motivation

- Interactive function computation problems:
 - Distributed source coding framework
 - Infinite-message interaction
 - Goal: characterize the ultimate limits of interaction

Outline

- Focus on 2-terminal interactive function computation problem
 - New functional characterization of infinite-message min sum-rate
 - Iterative algorithm for computing infinite-message min sum-rate
 - 2 messages can strictly improve the Wyner-Ziv R-D function
- Extension to multi-terminal problems
 - Star networks: interaction can change the scaling law
 - Collocated networks: new bounds order-wise better than cut-set bounds

2-terminal interactive function computation

- *n* samples $(X_i, Y_i) \sim \text{iid } p_{XY}$
- Samplewise function computation at A and B
- *t* alternating messages
- (R₁,...,R_t) is admissible if there
 exists a sequence of codes: as
 n→∞, (# bits msg j)/n → R_j and
 Pr[comp. error] → 0 (lossless,
 can extend to lossy)
- Minimum sum-rate:

 $R_{sum,t}^A = \min \sum_{i=1}^t R_t$

need $(f_A(X_1, Y_1), \dots, f_A(X_n, Y_n)), (f_B(X_1, Y_1), \dots, f_B(X_n, Y_n))$

• Understand ultimate benefit of cooperative interaction

- "Unexplored" dimension for asymptotic analysis:
 - (possibly) infinite messages with infinitesimal rate

Related work

- Communication complexity [Yao, Orlitsky,...]
 - Focus on Pr(comp. error) = 0
 - Usually about bits not rate

- Two-way source coding [Kaspi IT'85]
 - Source reproduction

- Coding for computing [Orlitsky & Roche IT'01]
 - Two messages

$R_{sum,t}$ for finite t: Solved

Single-letter characterization [Ma, Ishwar: ISIT'08, arXiv Nov'08]

$$R^{A}_{sum,t} = \min_{U^{t}} [I(X; U^{t}|Y) + I(Y; U^{t}|X)]$$

nts	Markov chains	Entropy constraints	Cardinality bounds
trai	$U_i - (X, U^{i-1}) - Y, i \text{ odd}$	$H(f_A(X,Y) X,U^t) = 0$	$ \mathcal{U}_i < \int \mathcal{X} \left(\prod_{i=1}^{j-1} \mathcal{U}_i \right) + t - j + 3, j \text{ odd},$
ons	$U_i - (Y, U^{i-1}) - X, i$ even	$H(f_B(X,Y) Y,U^t) = 0$	$ \mathcal{U}_{j} \geq \left \mathcal{Y} \left(\prod_{i=1}^{j-1} \mathcal{U}_{i} \right) + t - j + 3, j \text{ even} \right $
0			

- Achievability: sequence of Wyner-Ziv-like codes
- Finite dimensional optimization problem

How to compute $R_{sum,\infty}$?

• Idea 1:

- Pick a large *t*, compute $R^A_{sum,t}$, pray this is a good approximation

- © Finite-dimensional optimization problem
- \odot How large t ?
- \otimes Dimension explodes exponentially with t
- Idea 2:
 - Compute R^A_{sum,t} for t = 1, 2, ... till change is "negligible"
 ③ Finite-dimensional optimization problem (for each t)
 ③ Multiple problems, solve from scratch
 ③ Dimension explodes exponentially with t
- All this effort only for one p_{XY}
- Any hope?

A new approach

• View $R_{sum,\infty}(p_{XY})$ as a functional of p_{XY}

- New convex-geometric characterization of $R_{sum,\infty}(p_{XY})$
 - For entire functional $R_{sum,\infty}(\bullet)$ (not for only one fixed p_{XY})
 - Provides optimality test for admissible sum-rate functionals
 - Family of lower bounds for $R_{sum,\infty}(\bullet)$

- Alternating "convexification" algorithm for $R_{sum,\infty}$
 - Each iteration uses "same amount" of computation
 - Reuses results from previous steps
 - Works with the entire $R_{sum,\infty}(p_{XY})$ "surface"

Rest of this talk:

- Illustrate new approach through one simple example for 2-terminal lossless function computation
- Extension to general lossy two-terminal computation
 - Focus: benefit of interaction for lossy source reproduction

• Extension to multi-terminal problems (brief)

Example: compute AND at terminal B

- Sources: $X \perp Y, X \sim Ber(p), Y \sim Ber(q)$
- Only B computes: $f_A(X, Y) = 0$, $f_B(X, Y) = X \land Y$ (AND)
- Goal: Characterize $R_{sum,\infty}(p,q)$ as a function of (p,q)
- Rate reduction functional:

Example: compute AND at terminal B

- Consider t = 0:
 - Feasible for special boundary distributions
 - If infeasible, define rate := ∞

$$R_{sum,0}(p,q) = \begin{cases} 0, & \text{if } p = 0 \text{ or } q = 0 \quad (X \land Y = 0) \\ & \text{or } p = 1 \quad (X \land Y = Y) \\ \infty, & \text{otherwise} \quad (X \land Y \text{ not determined}) \end{cases}$$

Y

X

Example: compute AND at terminal B

- Consider t = 0:
 - Feasible for special boundary distributions
 - If infeasible, define rate := ∞

$$R_{sum,0}(p,q) = \begin{cases} 0, & \text{if } p = 0 \text{ or } q = 0 \quad (X \land Y = 0) \\ & \text{or } p = 1 \quad (X \land Y = Y) \\ \infty, & \text{otherwise} \quad (X \land Y \text{ not determined}) \end{cases}$$

$$p_0(p,q) = \begin{cases} h(p) + h(q), & \text{if } p = 0 \text{ or } q = 0\\ & \text{or } p = 1\\ -\infty, & \text{otherwise} \end{cases}$$

X

Y

B

 $\mathbf{X} \wedge$

New characterization of ρ_{∞}

"Limit-free" characterization of ρ_{∞} [Ma, Ishwar: Allerton 09]

ho_{∞} is the least element of ${\cal F}$, where

$$\mathcal{F} := \begin{cases} \rho(p,q) & | 1. \text{ For all } (p,q), \rho(p,q) \ge \rho_0(p,q) \\ 2. \text{ For all } q, \rho(p,q) \text{ is concave w.r.t. } p \\ 3. \text{ For all } p, \rho(p,q) \text{ is concave w.r.t. } q \end{cases}$$

Boston University

Interactive Function Computation

Key insight: the subproblem viewpoint

Connection between ρ_t^A and ρ_{t-1}^B ?

Boston University

Subproblem viewpoint (continued)

$$R_{sum,t}^{A} = \min_{U^{t}} [I(X; U^{t}|Y) + I(Y; U^{t}|X)]$$

$$\Rightarrow \rho_{t}^{A} = \max_{U^{t}} [H(X|Y, U_{2}^{t}, U_{1}) + H(Y|X, U_{2}^{t}, U_{1})]$$

$$= \max_{U_{1}} \left[\sum_{u_{1}} p_{U_{1}}(u_{1}) \rho_{t-1}^{B}(p_{u_{1}}, q) \right]$$

• $\rho_t^A(p,q) = \max[\text{ convex combination of } \rho_{t-1}^B(p_1,q), \rho_{t-1}^B(p_2,q), \ldots]$

- ρ_t^A = the smallest concave function above ρ_{t-1}^B

- hypo (ρ_t^A) = convex hull of hypo (ρ_{t-1}^B)

Subproblem viewpoint (continued)

- ρ_t^A concave in p, ρ_t^B concave in q
- ρ^B_{t-1} not concave in $p \iff \rho^A_t > \rho^B_{t-1}$

 \Leftrightarrow beneficial to add a message $A \to B$

- ρ_{∞} : not beneficial to add any message
 - \Leftrightarrow concave in *p* and *q*, respectively

Closed form expression of ho_{∞}

"Limit-free" characterization of ρ_{∞} [Ma, Ishwar: Allerton 09]

$$\rho_{\infty} \text{ is the least element of } \mathcal{F}, \text{ where}$$
$$\mathcal{F} := \left\{ \rho(p,q) \middle| \begin{array}{c} 1. & \text{For all } (p,q), \rho(p,q) \ge \rho_0(p,q) \\ 2. & \text{For all } q, \rho(p,q) \text{ is concave w.r.t. } p \\ 3. & \text{For all } p, \rho(p,q) \text{ is concave w.r.t. } q \end{array} \right\}$$

• Admissible sum-rate R*: (method in [Ma, Ishwar: ISIT'08])

$$R^{*}(p,q) = \begin{cases} h_{2}(p) + ph_{2}(q) + p\log_{2}q + p(1-2q)\log_{2}e, & \text{if } 0 \leq p \leq q \leq 1/2, \\ R^{*}(q,p), & \text{if } 0 \leq q \leq p \leq 1/2, \\ R^{*}(1-p,q), & \text{if } 0 \leq q \leq 1/2 \leq p \leq 1, \\ h_{2}(p), & \text{if } 1/2 \leq q \leq 1. \end{cases}$$

- Each ρ in \mathcal{F} is a UB of $\rho_{\infty} \Rightarrow h(p) + h(q) \rho$ is a LB of $R_{sum,\infty}$
- Optimality Test: Verify $\rho^* := h(p) + h(q) R^* \in \mathcal{F} \Rightarrow R^* \leq R_{sum,\infty}$

• Therefore
$$R^* = R_{sum,\infty}$$

Alternating concavification algorithm

- Each iteration: "same amount" of computation
- Obtain the whole surface $\rho_t(p,q)$ for all (p,q)

Alternating concavification algorithm

t = 0

t = 3

t = 4

 $t = \infty$ (from closed form)

Boston University

Interactive Function Computation

How the surfaces evolve

Boston University

Interactive Function Computation

How the surfaces evolve

Brightness: $|\rho_t(p,q) - \rho_{\infty}(p,q)|$, black: < 10⁻⁴

Interactive Function Computation

General p_{XY} and f_A , f_B with distortions D_A , D_B

1. $\rho \geq \rho_0$

"Limit-free" characterization of $\rho_{\infty}(p_{XY}, D_A, D_B)$ [Ma, Ishwar: arXiv Oct'09]

ho_{∞} is the least element of \mathcal{F} , where

$$\mathcal{F} := \left\{ \rho \left(p_{XY}, D_A, D_B \right) \right\}$$

2. For all $p_{Y|X}$, $\rho(p_X p_{Y|X}, D_A, D_B)$ is concave w.r.t. (p_X, D_A, D_B)

3. For all $p_{X|Y}$, $\rho(p_Y p_{X|Y}, D_A, D_B)$ is concave w.r.t. (p_Y, D_A, D_B)

$$\rho_0 \xrightarrow{\text{Concavify wrt} (p_X, D_A, D_B)}_{\text{Fix } p_{Y|X}} \rho_1^A \xrightarrow{\text{Concavify wrt} (p_Y, D_A, D_B)}_{\text{Fix } p_{X|Y}} \rho_2^B \longrightarrow \cdots$$

Key question:

For lossy source reproduction, can two messages strictly improve the Wyner-Ziv R-D function? [Ma, Ishwar: ISIT'10]

Wyner-Ziv problem

- *n* samples $(X_i, Y_i) \sim \text{iid } p_{XY}$
- Per-sample distortion measure $d(x, \hat{x})$
- Wyner-Ziv rate-distortion function [Wyner & Ziv IT'76]:

$$R^{A}_{sum,1}(D) = \min_{\substack{U-X-Y\\\widehat{X}=g(U,Y)\\E[d(X,\widehat{X})] \le D}} I(X;U|Y)$$

Kaspi's 2-way src coding problem (simplified version)

- Same objective: lossy source reproduction
- Two-message interaction [Kaspi IT'85] :

$$R^{B}_{sum,2}(D) = \min_{\substack{V_{1}-Y-X\\V_{2}-(XV_{1})-Y\\\hat{X}=g(V_{1},V_{2},Y)\\E[d(X,\hat{X})] \le D}} \{I(Y;V_{1}|X) + I(X;V_{2}|YV_{1})\}$$

Main question

• One message v.s. two messages

- $R_{sum,1} \ge R_{sum,2}$ always holds
- Question [Kaspi IT'85]: Is interaction useful?

$$R_{sum,1} = R_{sum,2}$$
 or $R_{sum,1} > R_{sum,2}$ for some D?

Related results

• Lossless function computation [Orlitsky & Roche IT'01], [Ma & Ishwar ISIT'08]

$$- X \perp Y, X \sim Ber(p), Y \sim Ber(q)$$

 $- f_A(X,Y) = 0, \quad f_B(X,Y) = X \wedge Y$

- Interaction may help: $R_1 + R_2 < R_{sum,1}$

-
$$R_{sum,1}/(R_1 + R_2)$$
 can be arbitrarily large

Related results

• Lossless source reproduction [Slepian & Wolf IT'73] and cutset bound

No benefit in using two messages

- Caveat: interaction may help for nonergodic sources [Yang & He, ISIT'08]

- Main question:
 - Lossy source reproduction: $R_{sum,1} = R_{sum,2}$ or $R_{sum,1} > R_{sum,2}$?

- Answer: $R_{sum,1} > R_{sum,2}$ ---- interaction is useful
 - Will first show this without explicitly constructing a two-msg scheme
 - Will then show explicit construction in which

1) $R_{sum,1}$ / $R_{sum,2}$ can be arbitrarily large and simultaneously,

2) R_1 / R_2 can be arbitrarily small where $R_{sum,1} > R_1 + R_2 \ge R_{sum,2}$

Key tool: rate reduction functional

Rate reduction functional

"Limit-free" characterization of $\rho_{\infty}(p_{XY}, D_A, D_B)$ [Ma, Ishwar: arXiv Oct'09]

ho_{∞} is the least element of \mathcal{F} , where

1. $\rho \ge \rho_0$

$$\mathcal{F} := \left\{ \rho \left(p_{XY}, D_A, D_B \right) \right\}$$

2. For all $p_{Y|X}$, $\rho(p_X p_{Y|X}, D_A, D_B)$ is concave w.r.t. (p_X, D_A, D_B)

- 3. For all $p_{X|Y}$, $\rho(p_Y p_{X|Y}, D_A, D_B)$ is concave w.r.t. (p_Y, D_A, D_B)
- Construct example where ρ_1 is not concave w.r.t. p_Y
 - Therefore $\rho_1 \neq \rho_{\infty}$
 - Can be improved by concavification (using two messages)

$\rho_1(p_{X|Y}p_Y, D)$ is not concave w.r.t. p_Y

• Let $p_{Y_1} \sim Ber(q)$ and $p_{Y_2} \sim Ber(1-q)$

• Let d = binary erasure distortion =

$d(x,\hat{x})$					
$x \setminus \hat{x}$	0	e	1		
0	0	1	∞		
1	∞	1	0		

• We can prove that there exist (p, q, D) such that

$$\rho_1\left(p_{X|Y}\frac{p_{Y_1}-p_{Y_2}}{2},D\right) < \frac{1}{2}\rho_1(p_{X|Y}p_{Y_1},D) + \frac{1}{2}\rho_1(p_{X|Y}p_{Y_2},D)$$

(would have been \geq if concave)

Explicit construction of 2-message aux.r.v.'s

$$R^{B}_{sum,2}(D) = \min_{\substack{V_{1}-Y-X\\V_{2}-(XV_{1})-Y\\\hat{X}=g(V_{1},V_{2},Y)\\E[d(X,\hat{X})] \le D}} \{I(Y;V_{1}|X) + I(X;V_{2}|YV_{1})\}$$

- Let $(X, Y) \sim \text{DSBS}(p)$ and
- Choose V_1 to be:

• Choose V_2 as follows:

- Given
$$V_1 = 0$$

– Given
$$V_1 = 1$$

Explicit construction of 2-message aux.r.v.

• When $0 < q \ll 1, 0 < p \ll 1$, $R_1 \ll R_2 \ll R_{sum,1} \ll 1$

- $R_{sum,1}$ / ($R_1 + R_2$) can be arbitrarily large and simultaneously

 $-R_1/R_2$ can be arbitrarily small

Interaction changes the scaling law in star networks

 $R_{sum}(m) = m$

 $1 \le R_{sum}(m) < 6$

[submitted to IT; arXiv Nov'08]

Collocated (broadcast) networks

- General independent sources, arbitrary function:
 - Functional convex-geometric characterization for $R_{sum,\infty}$ [ISIT'10]

- Bernoulli sources, symmetric function: X₁ [ISIT'09]
 - New upper/lower bounds for $R_{sum,\infty}$
 - New bounds: order-wise tight
 - Cut-set bound: order-wise loose

Concluding remarks

- Interaction is powerful:
 - May get arbitrarily large improvement for lossy source reproduction
 - May get arbitrarily large improvement for function computation
 - May change the scaling law for network computation

- Characterizing the ultimate limits of interaction:
 - New type of functional single-letter characterization of $R_{sum,\infty}$
 - Alternating "concavification" algorithm for computing $R_{sum,\infty}$
 - New bounds can capture correct scaling behavior in some types of large networks

Future directions

- Interactive (cyclic) network coding
- Interactive function computation in general networks
- Practical interactive code designs
- Interactive computation over noisy channels
- Infinite messages with infinitesimal rate => "Calculus" for source coding?

Other research topics

Field reconstruction using **Delayed sequential coding** noisy one-bit sensors of video frames Enc.1 Dec.1 Dec.2 Enc.2 Enc.3 Dec.3 Modulation formats in 40Gbps fiberoptic communication systems Enc.1 Λ ΛΛ ΛΛΛ Enc.2 Dec.1 Dec.2 Enc.3 AMI Dec.3 proposed